The Drosophila kinesin-like protein KLP67A is essential for mitotic and male meiotic spindle assembly.

نویسندگان

  • Rita Gandhi
  • Silvia Bonaccorsi
  • Diana Wentworth
  • Stephen Doxsey
  • Maurizio Gatti
  • Andrea Pereira
چکیده

We have performed a mutational analysis together with RNA interference to determine the role of the kinesin-like protein KLP67A in Drosophila cell division. During both mitosis and male meiosis, Klp67A mutations cause an increase in MT length and disrupt discrete aspects of spindle assembly, as well as cytokinesis. Mutant cells exhibit greatly enlarged metaphase spindle as a result of excessive MT polymerization. The analysis of both living and fixed cells also shows perturbations in centrosome separation, chromosome segregation, and central spindle assembly. These data demonstrate that the MT plus end-directed motor KLP67A is essential for spindle assembly during mitosis and male meiosis and suggest that the regulation of MT plus-end polymerization is a key determinant of spindle architecture throughout cell division.

منابع مشابه

Mitochondrial Association of a Plus End–Directed Microtubule Motor Expressed during Mitosis in Drosophila

The kinesin superfamily is a large group of proteins (kinesin-like proteins [KLPs]) that share sequence similarity with the microtubule (MT) motor kinesin. Several members of this superfamily have been implicated in various stages of mitosis and meiosis. Here we report our studies on KLP67A of Drosophila. DNA sequence analysis of KLP67A predicts an MT motor protein with an amino-terminal motor ...

متن کامل

The Drosophila kinesin-like protein KLP3A is a midbody component required for central spindle assembly and initiation of cytokinesis

We describe here a new member of the kinesin superfamily in Drosophila, KLP3A (Kinesin-Like-Protein-at-3A). The KLP3A protein localizes to the equator of the central spindle during late anaphase and telophase of male meiosis. Mutations in the KLP3A gene disrupt the interdigitation of microtubules in spermatocyte central spindles. Despite this defect, anaphase B spindle elongation is not obvious...

متن کامل

The Drosophila orthologue of the INT6 onco-protein regulates mitotic microtubule growth and kinetochore structure

INT6/eIF3e is a highly conserved component of the translation initiation complex that interacts with both the 26S proteasome and the COP9 signalosome, two complexes implicated in ubiquitin-mediated protein degradation. The INT6 gene was originally identified as the insertion site of the mouse mammary tumor virus (MMTV), and later shown to be involved in human tumorigenesis. Here we show that de...

متن کامل

Kinesin 6 family member Subito participates in mitotic spindle assembly and interacts with mitotic regulators.

Drosophila Subito is a kinesin 6 family member and ortholog of mitotic kinesin-like protein (MKLP2) in mammalian cells. Based on the previously established requirement for Subito in meiotic spindle formation and for MKLP2 in cytokinesis, we investigated the function of Subito in mitosis. During metaphase, Subito localized to microtubules at the center of the mitotic spindle, probably interpolar...

متن کامل

subito encodes a kinesin-like protein required for meiotic spindle pole formation in Drosophila melanogaster.

The female meiotic spindle lacks a centrosome or microtubule-organizing center in many organisms. During cell division, these spindles are organized by the chromosomes and microtubule-associated proteins. Previous studies in Drosophila melanogaster implicated at least one kinesin motor protein, NCD, in tapering the microtubules into a bipolar spindle. We have identified a second Drosophila kine...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • Molecular biology of the cell

دوره 15 1  شماره 

صفحات  -

تاریخ انتشار 2004